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I. lNTROXWCTION
In an earlier publication we provided substantial evidence that

according to the predictions of magnetohydrodynamics (MID), any realistic
field-”reversed configuration (FRC) equilibrium should be very unstable to
internal tilting. For the parameters of the Los Alamos FRX-B experiment the
c-folding time of the instability is about 1 PS1. However, ~-B shows mO

signs of tilting during the 20 AS quiescent phase of the experiments that
precedes the onset of the n=2 rotational instability. Thus evidently there is
a major disagreement between the experiments and the predictions of MD
regarding the tilting instability. In this work we present n~erical results
of the finite Lamnor radius (FLR) tre~tment of the tilting raode as described
by Seyler and Barnes2. We have two principal results, First, the FLR theory
of tilting has singularities at the magnetic axis that make application of the
theory unphysical. Secund, numericel results will be presented showing that
for current experiments the magnetic moments of the ions are poorly conserved
at the tips of the flux surfaces in an FRC, and therefore there iSA~
reason to view an FLR theory as suspect for glebal modes in FRCs.

11. MHDRESULTSFOR TILTING
Reference 1 contains a stability study of realistic FRC equilibria. The

conclusion of that work is that WI) profile effects cannot account for the
observed stability of the experiments, since all equilibria investigated were
roughly equally unstable to tilting. We ●seume that three properties of the
MHD eigenfunction hold approximately in our FLR calculation: that the
displacement in the r-z plane is ●xial (hithly elongated FRC); that the axial
displacement is rigid, ~z=fz(~) (elliptical-like equilibria); and, that
tz(w~)=o $ where *O is the separatrix (internal mode).

111. FLR THEORYOF TILTING
In this section we present the dispersion functional appropriate to the

Vlasov-fluid model as derived by Seyler and Barnes. The Vlasov-fluid model
Gssumes that the ions are described by a Vlasov equation, and that the
electrons are treated as R cold, fluid.

‘ss’e*s3,4
Since MID and the

Vlasov-fluid model have the same marginal point we would not calculate
complete kinetjc stabilization if all terms were ~valuatod ●xactly, However,
in an FLR theory, where particle resone.ucas are neglected, it is possible to
obtain complete stabilization.

in the Vlasov-fluid model the scalar and vector pntentiale ● re
represented in terms of a d~splacement vector ~ as ~ r ~x~ and VI = ~*~. The
dispersion functions} A({ ,~) is $btained tby mu tiplying the ●quations of
motion of the Vlasov-fluid model by ~ ● and integrating over ●ll space. The
r~sult from Seyler and ~arnes is

~ - -Z6W - UF + &02K - R(w) = 0, (1)

in the last ●quation dW is the incompr~ssible idea] W4W, F is the FLR term,
K is the kjnetic ●nergy normalization term, and R(u) is the resonant particle
term. R(u) is neglected in an FIJt theory, where c=piO/a<<i and d=@<<l,
where ● and b ●re the minor and major radii, respectively, of tho FIW, andpiO
ie the ion Larmor radius ●t the wall.

It can be shown that tho terms K and F of Seylcr and Barnes ●e
incomplete in that R(u) contains terms that ●re of the ●w ordor ●s those
retained in K and F. The ●dditjon of the new terms leads to ● new dimpermion
functional
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+ O(L%.C%*) = 0.

and Barnes, the term F is of the form

b2&12),

where b~(~) is of the form

(2)

(3)

(4)

We have followed Seyler and Barnes by replacing the local gyrofrequency 0 by a
non:~cal frequency, On, which transfers smoothly from fl to the betatron
frequency as one approaches the field null. It is easy to show that the new
FM? term merely leads to amdification of ~2 in Eq. (4):

(5)

Au can be seen from (5) the new terms of F2 arise from a particular flux
surface average of the single particle drift frequency, and these new terms
are important numerically compared to the terms in F.

When the dispersion functional A2 was used in the eigenvalue code of
reference 1, it was discovered numerically and then understood analytically
that the FLR terms were becoming infinite at the magnetic axis. .Recall that
Seyler and Barues avoided one singularity by replacing fi by the nonlocal
frequency On in Eqs. (4-5). ; owever, there still remain divergences in F2.
As # * *O the flux surfaces become (highly elongated) ellipses, and it is
possible to derive analytical forms for the curvatures k,, and xl, It is then
possible to show that terms such as the last term in the square brackets of
(5) diverge as#-# , Th~ effect of this is that near the field null the FLR
term completely domi~ate~ the unstable 6W term in the dispersion functional,
and “FM? stabilization” of the tilting mode is ●chieved, Obv:ously this is
not a physical result. One might argue that it would be more realistic to cut
off the divergences in F2 at some cut-off value of $ near # , @c; this would
still allow the FLR terms to operate where presumably they ape accurate, in
the re~ion ●way from the field null. This was done and in Table 1 we show the
FLR growth rate normalized to the W \alue for various values of ~c/wO.

*c/#o I 0.0 I 05 I 0.7 I 0.8 I 0.9 I 1.0

71 1.00 I 0.86 I 0,s3 I 0.14 I 0,00 I 0.00

TABLE 1. ~ ie the FM? growth rate normalized to the MD value and ~c/~ is the
ratio of the *alue of ~ where the I’M turns are cutoff to the total trapped flux,

.
3

Table 1 chows that there J.E ● significant FM stabilizing ●ffebt from the flux
mirfacee ●way from the field nuil (say, @c/~ < 0.8). However we must
queotion the reliability of the resulte in Table l.O There ●lwkye ●re ways ta
emooth out singularities, but to do DO is UW and physically may not be
unique. Table 1 showe that the normalized growth rat~ can have any va]u~
b.twaen O arid 1, depending on just where the F

W
erme ●re cut off. Equstion

(2) mnbe solved foru: u - [F * (F1 + 16NK ) i ]~N2.
f f

From this ●quation
we ●ee that the FM term ra e ●lways etabi izing (for ●igenfunctione ~ not
too different from the W ●igenfunction), Since M ●xpression for F2 is
stabilizi~, we should h-v~ confidence in the reeulte only hen FQ je obtained
rtgorouely and in ● parameter regime Wb@re the FLR ●pproxiaatjon is ● good

one. To sumarixe, if the full FLR terms ●re kept the reeult is unphysical,
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FRx-c . In Figs. lC and ld are the corresponding plots for 5 mTorr operation
of m-c, in which the ion temperature is 600 eV (s=2.4). In the low
temperature case the magnetic moment of the ion i8 conserved well in the
straight field line region of the FRC, and in the high temperature case the
oscillation in the magnetic moment is 415%. In both cases when the ion
reaches the tips of the flux surfaces the magnetic moment experiences large,
random oscillations; this is caused primarily by the fact that the aagnetlc
field line curvatures are large enough compared to the Lamer radius that the
ions experience a nonadiabatic shift from VJ to v,,. Also, Fig. lb shows that
after the ion ●xperiences the nonadiabatic region at the tips of the flux
surfaces its magnetic moment jumps to quite a different value than it started
with. This behavior is particularly unacceptable in the case of the tilting
mode where the eigenfunction is peaked at the tips of the flux surfaces. The
trajectories shown in Figs. la and lC were not specially chosen-we have
inspected many trajectories, even for subthermal particles, and p is always
poorly conserved as in Figs. lb and ld. Also not shown are those
trajectories that pass near the field null, where the definition of p becomes
meaningless (this is also the region of peak ion number density).

Followlng a suggestion by R. Spencer, we can ●sk what is the critice]
value of s, Scrjt, such that for S>scrit M is conserved satisfactorily (say,
Ap<*25%) for a thermal ion away from the field null? s . My give a rough
indication of when FLR fluid effects become realizable. f&bi#s. 2a and 2b
we show two ●lliptical equjlibrla6, with x =0,59 and X8=0.67, respe.ctive]y,
and in 2C end 2d two racetrack equilibria, with x~=O.60 and X8=0.80,
respectively. The values of Scr t

i
are shuwn in the Figure. The :onclusion is

that FLR fluid effects My not ecome realizable until s f~ceeds ’40 for
equilibria ef moderate xs (xs<O.6) and 45-60 for equilibria of large xs
(XS>O.85) .

v, CONCLUSIONS
We have shown that an FLR theory of the tilting mode in FXs is

unreliable due to a breakdown of the FLR ●ss~tions of small ion Lermor
rad~us and constant magnetic moment. If the answer ‘o the FRC tilting problem
lies in linear stability theory, then evidently ● nonlocal kinetic stability
computation must be done, and we will report on that calculation in ● future
publication.
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if the FLR terms are cut off ●t some *alue of ~ the resulting growth rate is
not unique since it reflects that arbitrary cut-off.

‘his discouraging conclusion ●rises unavoidably from an FLR theory, and
this is one reason Why we feel FLR theories ●re not appropriate for global
modes in FRCs. In en FLR theory it is assumed that the local Lermor rmdiua of
the particles is small compared to any other scale length of the problem, such
●s the scale length of the normal mode. Thus in the orbit interrals, which
cover ● spatial region roughly the size of the local ion Larmv (or betatron)
radius, the perturbation ~ is pulled outside the integral. However, the
spatial extent of an ian orbi ~ is not eemall quamtity near the field null of
en FRC. The exact orbit integrals contain curvature factors that are averaged
both ●long the field line, ●s in (4-O), end ●cross various flux surfaces, as
determined by the ●patial extent of the local ion orbit. It is the letter
●veraging that yields e finite result for the ,exect orbit integral bat which
is ●bsent in the FLR approximation.

Iv. CONSTANCY OF ~ MAGNETIC MOMENT
In this section we present numerical results for the constency of the

mmgnetic moment for ions in FRC ●quilibria. A convenient paremeter that
~asures the xnnaber of ion Larmor radii from the field null
ie5

‘s dr r xSR
—.

● ‘R’ !spi(r) = 5pio’

where X* is the reti; of seperatrix radius to wall radius
●quilibrium).

We solve the ●quations of motion numerically for

to the separatrix

(6)

(2s=.59 for our

an ion in the two
dhsemsional ●ffective potential of en FRC. As the particle trajectory is
computed we monitor the instantaneous megnetic moment of the particle, p(t) =
w2/2B =, where B c is measured at the particle’s instantaneous guiding center
po~iti%n and VJ if measured in the particle’s local ~ x ~ frame.

In Fig. la we show e plot of a thermal ion trajectory rnuperhaposed on
the flux surfaces of the equilibrium being considered in this paper, In Fig.
lb is the corresponding plot of M normalized to its value at t=O, ●s e
function of time ●long the trajectory. These two plots correspond to en ion
temperature of 100 ●V (s=6.0), which is typical of 20 mTorr operation of
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mm.lm i . Purtiale trejectoriee end FIUUIE 2. Elliptical mnd racetrack
corresponding me8netia -nts ve time, ●quilibrie with witical s values.


